

Static Testing of Post-Tensioned Products, Inc. Barrier Cable Insert 9140 CR 229 N Sanderson, Florida 32087

FINAL REPORT

August 2, 2024 WJE No. 2021.3293

PREPARED FOR:

Post-Tensioned Products, Inc. 9140 CR 229 N Sanderson, Florida 32087

PREPARED BY:

Wiss, Janney, Elstner Associates, Inc. 330 Pfingsten Road Northbrook, Illinois 60062 847.272.7400 tel

Static Testing of Post-Tensioned Products, Inc. Barrier Cable Insert

Jahn Ferson

John Pearson SE (IL), PE (FL) Project Manager

FINAL REPORT

August 2, 2024 WJE No. 2021.3293

PREPARED FOR:

Post-Tensioned Products, Inc. 9140 CR 229 N Sanderson, Florida 32087

PREPARED BY:

Wiss, Janney, Elstner Associates, Inc. 330 Pfingsten Road Northbrook, Illinois 60062 847.272.7400 tel

CONTENTS

Introduction	1
Scope of Work	.1
Basic Product Information	1
Product Description	.1
Product Sampling	
Test Methods and Requirements	1
Tension Test	.1
Test Result	2
Figures	3
Test Machine Calibration	9

INTRODUCTION

At the request of Post-Tensioned Products, Inc. (PTP), the firm of Wiss, Janney, Elstner Associates, Inc. (WJE) conducted tension testing services to determine the tensile capacity and failure location of an insert used for the PTP EZ-Place Cable Rail system.

Scope of Work

The scope of work consisted of performing a tension test by WJE in general accordance ASTM A370, *Standard Test Methods and Definitions for Mechanical Testing of Steel Products*. Tension testing was performed to determine the ultimate tensile capacity of the insert used as part of the PTP EZ-Place Cable Rail barrier cable system.

BASIC PRODUCT INFORMATION

Product Description

The insert is a hollow cylinder measuring 8-in long by 1 3/32-in in diameter (Figure 1). An increased diameter section at one end measures 1/4-in long by 1 1/4-in diameter. The insert has an internal threaded section of 3/4-in-10 and 3-in long. The remaining hollow portion of the insert has a 2-in long by 1/2-in diameter section and a 3-in long by 11/32-in diameter section. The drawing states the insert is fabricated using 108 1018 steel.

Product Sampling

The insert tested was shipped to WJE by PTP. WJE arbitrarily selected the insert for testing from those provided.

TEST METHODS AND REQUIREMENTS

All testing of the strand and anchorages were conducted by WJE personnel at our structural laboratory in Northbrook, Illinois. Test machine calibration records are included in Appendix A. All testing protocols followed WJE's Quality Manual.

Tension Test

The tension test was conducted using a Satec universal test machine (s/n 1240). The test machine utilizes wedge grips for holding a test sample during loading. In order to uniformly grip the inserts, the section of the insert with 1 1/4-in diameter (Figure 2) had to be turned down to 1 3/32-in diameter to match the diameter of the remaining length.

The test configuration consisted of two inserts connected with a 3/4-in diameter threaded rod (Figure 3). The threaded rod was threaded the full length of the insert threads. Testing was conducted using the Satec universal test machine with a closed-loop computer-controlled hydraulic system. The controller was programmed to operate the test machine crosshead separation in displacement control at a rate of approximately 0.003 in/s. Load was applied until the sample fractured. The applied load and test machine crosshead movement were measured and continuously recorded.

TEST RESULT

The sample was loaded by the test machine in displacement control until the sample fractured. A maximum load of 46,660 lbf was achieved. The fracture occurred at the end of the internally threaded section. A photograph of the failure mode is shown in Figure 4. A load-displacement plot for the test sample is shown in Figure 5.

FIGURES

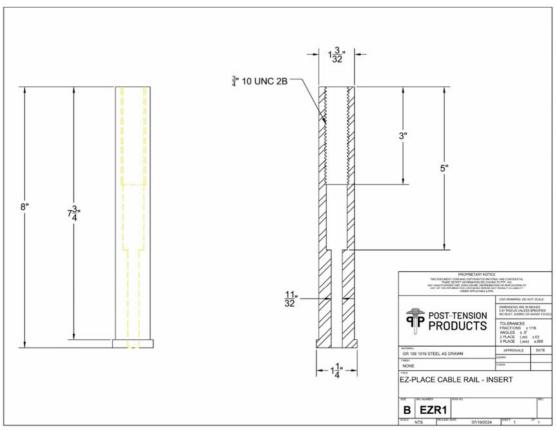


Figure 1. Drawing of EZ-Place Cable Rail insert

Figure 2. Insert showing section before being turned down to match the diameter of the remaining length of insert.

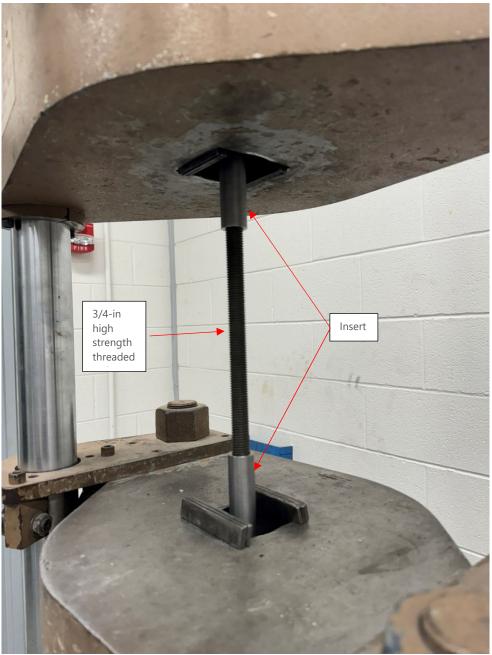


Figure 3. Test sample with insert on either end connected with a 3/4-in diameter high strength threaded rod.

Figure 4. Test sample fracture

Static Testing of Post-Tensioned Products, Inc. Barrier Cable Insert

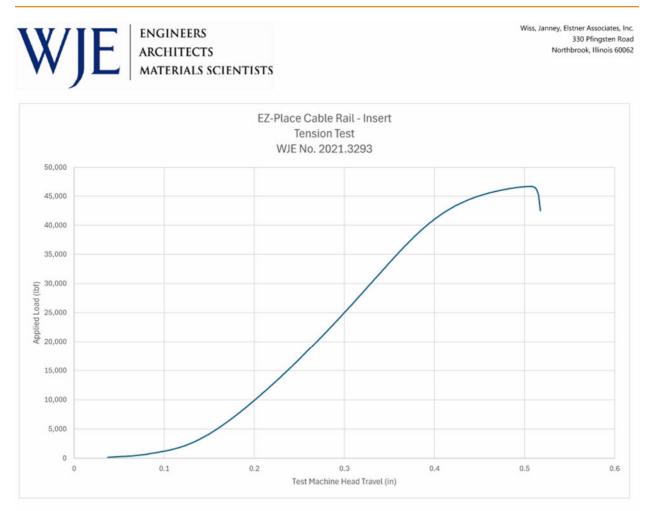


Figure 5. Load-displacement (crosshead separation) plot

TEST MACHINE CALIBRATION

Cal-Rite has calibrated the testing equipment described above in accordance with the latest applicable specifications (ISO/IEC 17025, ANSI Z-540-1 and 10-CFR-21). All calibration measurements are traceable to the International System of Units (SI) through NIST.
When a decision rule is stated in the governing specification, the prescribed decision rule was used in the pass/fail determination unless otherwise noted. In all other cases where a statement of conformance is made, the determination of conformance is made solely on the measurements falling in or out of the applied tolerance. Measurement uncertainty is stated, but not used to determine pass/fail status.
The uncertainty of the calibration process was estimated approximately at the 95% confidence level (k=2).
These results relate only to the item calibrated

0.00

-0 10

-0.08

-0.03

0.05

-0.09

-0.11

-0.05

-0.06

-0.03

0.25

0 17

0.10

0.05

0.08

0.11

0.12

0.06

0.06

0.03

1.00

1 00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1 00

1.0 %

10%

1.0 %

10%

1.0 %

1.0 %

1.0 %

1.0 %

1.0 %

10%

0.000

-2 333

-4.000

-2 667

6.000

-22.333

-54.667

-39.333

-54.333

-30 667

0.083

0.042

0.021

0.012

0.008

0.004

0.002

0.001

0.001

0.001

All force verification devices have been calibrated in accordance with ISO 376 practices and used within the certified Class 1 or better range
All force verification devices have been calibrated in accordance with ASTM E74 practices and used within the certified Class A range.
Computed forces have been temperature corrected as necessary

Service Comments: Verified proper operation of machine. Calibrated force in compression in accordance with ASTM and ISO standards. All readings found and left within tolerance and repeatable. Made adjustments to reduce error. The machine is in good condition and functioning properly at this time.

As Found Condition: In Tolerance

Calibration Procedure: CR100 Rev 16

Calibration Method: Follow the Force

Service Order #: 20256 - 17

GIL GUTIERREZ

1.0 %

10%

1.0 %

10%

1.0 %

1.0 %

1.0 %

1.0 %

1.0 %

10%

0.29

0 29

0.29

0.20

0.29

0.29

0.29

0.29

0.29

0.29

SERVICE ENGINEER

As a mutual protection to the purchaser, the public, and ourselves, all Cal-Rite calibration reports are submitted as the confidential property of the purchaser, and any authorization for publication of statements, conclusions, or extractions from or regarding our reports is reserved pending our prior written approval.

1.00%

2 00%

4.00%

7 00%

10.00%

20.00%

40.00%

60.00%

80.00%

100 00%

1200

2400

4800

8400

12000

24000

48000

72000

96000

120000

1

1

1

1

1

1

1

1

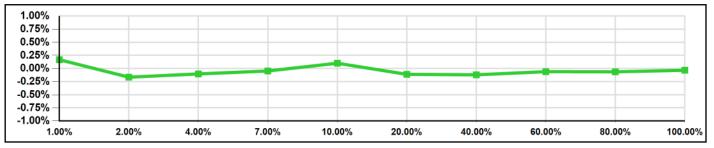
1

Ru	ın-1									
	Reading (%FS)	UUT Indication	Resolution	Resolution Error(%)	Reading-1	Reading-1 Error	Reading-1 Error%	Class	Run-1 Return to Zero:	8 120000
	0.00%	0	1	0.000	0	0.000	0.00	0	Max Force Applied:	
	1.00%	-	1	0.083	1,209	-9.000	-0.74	1	Relative Zero Error:	0.01%
-	2.00%	,	1	0.083	2,419		-0.74	1	Calibration Load Cell	Agreement
-	4.00%	,	1	0.042	4,834	-34.000	-0.79	1	Test Force:	24000
	7.00%	,	1	0.021			-0.62	1	Land Call A Dandinar	
_	10.00%	-,	1	0.0012	- / -		-0.63	1	Load Cell A Reading:	24027
-	20.00%	,	1	0.008			-0.03	1	Load Cell B Reading:	24023
-		,	1		· · ·			1	Relative Error (A):	0.112
	40.00%	- ,	1	0.002	48,289	-289.000	-0.60	1		0.000
	60.00%	. ,		0.001	72,373		-0.52	1	Relative Error (B):	0.096
	80.00%	,		0.001	96,537	-537.000	-0.56	1	Difference:	0.017
	100.00%	120,000	1	0.001	120,816	-816.000	-0.68	1	Class:	0.5

Cal~Rite Corporation

1655 GUINCY AVENUE, UNIT 103, NAPERVILLE, IL 50540 P630,298,1832 P 620,285,1544 WWW.CALHINE.COM

Calibration Date: 18-Mar-2024 DIGITAL Indicator: Manufacture: SATEC Capacity: 120000 Next Calibration: 18-Mar-2025 Model: 120HVL Customer Id: Serial #: 1240 Shunt #: 14231 692 **Test Direction:** COMPRESSION Software Version: MTQ 5.07.07 External Cell: 35253 Specification's: ISO 7500-1:2018 **Temp Variance:** 69.8 F/27 % 0.6 **Temp/Humidity:**


ISO REPORT

Run-4 (If Required)

Piston Position: 2

9	Run-4 Return to Zero:				1 150011		Run-4 (Il Requireu)		
120000	Max Force Applied:	Class	Reading-4 Error%	Reading-4 Error	Reading-4	Resolution Error(%)	Resolution	UUT Indication	Reading (%FS)
0.01%	Run to Zero Error:	0	0.00	0.000	0	0.000	1	0	0.00%
Cell Agreement	Calibration Load Cell Agreemen		-0.08	-1.000	1,201	0.083	1	1,200	1.00%
0	Test Force:	1	-0.17	-4.000	2,404	0.042	1	2,400	2.00%
-		1	-0.06	-3.000	4,803	0.021	1	4,800	4.00%
0	Load Cell A Reading:	1	-0.04	-3.000	8,403	0.012	1	8,400	7.00%
0	Load Cell B Reading:	1	0.02	2.000	11,998	0.008	1	12,000	10.00%
0.000	Relative Error (A):	1	-0.07	-17.000	24,017	0.004	1	24,000	20.00%
0.000	D-1-4 E (D).	1	-0.10	-49.000	48,049	0.002	1	48,000	40.00%
0.000	Relative Error (B):	1	-0.05	-33.000	72,033	0.001	1	72,000	60.00%
0.000	Difference:	1	-0.05	-49.000	96,049	0.001	1	96,000	80.00%
0.5	Class:	1	-0.02	-22.000	120,022	0.001	1	120,000	100.00%

Linearity Profile (Percent Full Scale)

Calibrating Apparatus Used

Manufacture	Туре	Serial Number	Cls	Capacity	Class A	Cert. #	Cal. Date	Cal. Due	Cal By
TOVEY	CS22-60K	119937A	1	60,000	1200	19971-1	10/16/2023	10/16/2025	CAL-RITE
STRAINSENSE	SSTMM604C	101208	1	600,000	17520	19718-1	9/1/2023	9/1/2025	TOVEY
MANTRACOURT	S181	17062459	1	4	0	20272-5	3/15/2024	7/15/2024	CAL-RITE

Service Order #: 20256 - 17

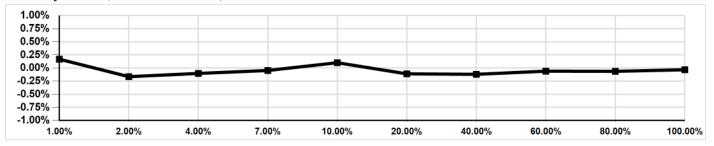
GIL GUTIERREZ

SERVICE ENGINEER

- As a mutual protection to the purchaser, the public, and ourselves, all Cal-Rite calibration reports are submitted as the confidential property of the purchaser, and any authorization for publication of statements, conclusions, or extractions from or regardingreports is reserved pending our prior written approval.

Cal~Rite Corporation

1655 GUINCY AVENUE, UNIT 103, NAPERVILLE, IL 50540 P630,398,1832 P 620,385,1544 WWW.Cal-MITE.COM



Calibration Date: 18-Mar-2024 DIGITAL Indicator: Manufacture: SATEC Next Calibration: Capacity: 120000 18-Mar-2025 Model: 120HVL Customer Id: Serial #: 1240 Shunt #: 14231 692 **Test Direction:** COMPRESSION Software Version: MTQ 5.07.07 External Cell: 35253 Specification's: ASTM E 4-21 69.8 F/27 % **Temp Variance:** 0.6 **Temp/Humidity:**

ASTM

Range: 120,000 L	BF Resolution	n 1 LBF	Accuracy: +/-: 1.0	%	Uncertainty: 0.29%			
Readout UUT	As Found	As Adjusted	As Left	Repeat %	Max Error	Error %		
0	0	0	0	0.0000	0.0000	0.0000		
1,200	1,209	1,198	1,201	-0.250	-1.000	0.167		
2,400	2,419	2,401	2,402	-0.042	-2.000	-0.166		
4,800	4,834	4,804	4,805	-0.021	-5.000	-0.104		
8,400	8,452	8,401	8,404	-0.036	-4.000	-0.048		
12,000	12,076	11,988	11,996	-0.067	4.000	0.100		
24,000	24,117	24,027	24,023	0.017	-23.000	-0.112		
48,000	48,289	48,057	48,058	-0.002	-58.000	-0.121		
72,000	72,373	72,041	72,044	-0.004	-44.000	-0.061		
96,000	96,537	96,053	96,061	-0.008	-61.000	-0.064		
120,000	120,816	120,041	120,029	0.010	-29.000	-0.034		
Zero Return: 0.010% 0.010% 0.010%								

Linearity Profile (Percent Full Scale)

Calibrating Apparatus Used

Manufacture	Serial Number	Capacity	Class A	Cal Date	Cal Due	Calibrated By
TOVEY	119937A	60,000	1200	10/16/2023	10/16/2025	CAL-RITE
STRAINSENSE	101208	600,000	17520	9/1/2023	9/1/2025	TOVEY
MANTRACOURT	17062459	4	0	3/15/2024	7/15/2024	CAL-RITE

Service Order #: 20256 - 17

GIL GUTIERREZ

SERVICE ENGINEER

- As a mutual protection to the purchaser, the public, and ourselves, all Cal-Rite calibration reports are submitted as the confidential property of the purchaser, and any authorization for publication of statements, conclusions, or extractions from or regardingreports is reserved pending our prior written approval.