

AC303 Testing of SC1 Splice Coupler

September 14, 2025 WJE No. 2025.3912

PREPARED FOR:

Post-Tensioned Products, Inc. P.O. Box 1969 Callahan, Florida 32011

PREPARED BY:

Wiss, Janney, Elstner Associates, Inc. 330 Pfingsten Road Northbrook, Illinois 60062 847.272.7400 tel

AC303 Testing of SC1 Splice Coupler

Post-Tensioned Products, Inc.

John Pearson Project Manager Brian Easton Project Engineer

Bein & Endas

September 14, 2025 WJE No. 2025.3912

PREPARED FOR:

P.O. Box 1969 Callahan, Florida 32011

PREPARED BY:

Wiss, Janney, Elstner Associates, Inc. 330 Pfingsten Road Northbrook, Illinois 60062 847.272.7400 tel

AC303 Testing of SC1 Splice Coupler

CONTENTS

Introduction	1
Scope of Work	
Basic Product Information	
Product Description	
Product Sampling	
Test Methods and Requirements	1
Strand Control Test	2
Static Load Tests	2
Fatigue Load Tests	2
Test Data and Results	3
Figures	5
ADDENIDIVA Des destino Descritore	

- **APPENDIX A. Production Drawing**
- **APPENDIX B. Test machine and Extensometer Calibration Certificates**
- **APPENDIX C. Strand Control Test**
- **APPENDIX D. SC1 Splice Coupler Static Tests**
- **APPENDIX E. SC1 Splice Coupler Fatigue Tests**

AC303 Testing of SC1 Splice Coupler

INTRODUCTION

At the request of Post-Tensioned Products, Inc. (PTP), the firm of Wiss, Janney, Elstner Associates, Inc. (WJE) conducted testing services following the procedures outlined in the International Code Council-Evaluation Services (ICC-ES) Acceptance Criteria AC303, Acceptance Criteria for Post-Tensioning Anchorages and Couplers of Prestressed Concrete. Testing summarized in this report was performed using a coupler configuration of a SC1 Splice Coupler for 0.5-in diameter 7-wire strand.

Scope of Work

The scope of work consisted of performing tests by WJE in accordance with AC303 for the SC1 Splice Coupler. All testing utilized Grade 270 low relaxation 7-wire strand. The following tasks were performed as part of the scope of work:

- Random sampling of the strand anchorages to be tested from the manufacturer's provided supply (AC303 Section 2.4)
- Performing static tensile tests to determine the breaking strength of the strand (AC303 Section 3.1)
- Performing static load tests of strand with the use of anchorages (AC303 Sections 3.2 and 4.1)
- Performing fatigue load tests of strand with the use of anchorages (AC303 Sections 3.3 and 4.2)

Test results were compared to the requirements stated in AC303 as well as the requirements of American Concrete Institute (ACI) ACI 318-25, Section 25.8.1, ACI 423.7-14, Section 9.4 and Section 9.5, and Post-Tensioning Institute (PTI) PTI M10.2-24, Section 2.5.

BASIC PRODUCT INFORMATION

Product Description

The SC1 Splice Coupler and 0.5-in. diameter strand consist of a steel coupler and three-piece wedge that grips the strand (Figure 1). The SC1 Splice Coupler can be used for connecting 0.5-in, 7-wire strand ends. Appendix A contains a drawing for the coupler used for testing the SC1 Splice Coupler.

Product Sampling

All of the products for the testing program were sampled by WJE from samples sent to WJE by PTP. The test sample dimensions were measured and compared to available drawings. The measured dimensions agreed with the provided drawings (Appendix A).

TEST METHODS AND REQUIREMENTS

All static and fatigue testing of the strand and coupler were conducted by WJE personnel at our structural laboratory in Northbrook, Illinois. Test machine calibration records are included in Appendix B. All testing protocols were in compliance with WJE's Quality Manual. All couplers tested were assembled from components shipped to WJE. WJE personnel assembled each anchorage from production components prior to testing.

AC303 Testing of SC1 Splice Coupler

Strand Control Test

Representative strands were chosen from the samples provided to determine the actual breaking strength of the strand used for the tests. Tests were conducted in accordance with ASTM A1061, *Standard Test Methods for Testing Multi-Wire Steel Strand* and results were compared to ASTM A416 *Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete* requirements. Data were recorded and are included in Appendix C for the strand used for testing. A total of three strands were tested and averaged, and the results were used to determine the actual breaking strength to be used for comparison of the anchorage static tests.

Static Load Tests

Three static load tests were performed using a SC1 Splice Coupler connecting two 0.5-in, 7-wire strand ends to comprise a test sample. Each test resulted in testing one coupler for a total of three tests. The static load tests were performed in accordance with AC303 Section 4.1.

The strands used for the tests had a length of at least 42 in. on either end of the coupler. The actual distance between the strand gripped end of the test machine and coupler was measured prior to loading the samples. A baseline gage length, a minimum of 3 in. from the ends of the coupler, was measured and recorded prior to loading. At the conclusion of each test, the gage length was re-measured and recorded to determine the actual elongation. Load and elongation data were recorded for each test.

The strand was inserted into either end of the coupler, and the opposite ends were gripped by the top and bottom test machine grips designed to prevent strand wire stress risers.

In accordance with AC303, Section 3.2.2, each test assembly was considered to pass when the maximum test load of the strand exceeded 95 percent of the actual breaking strength of the strand, as determined from the strand control test, and the strand elongation at failure was at least 2 percent.

Fatigue Load Tests

Fatigue load tests were performed using a SC1 Splice Coupler connecting two 0.5-in, 7-wire strand ends. Tests were performed in general accordance with AC303 Section 4.2. One end of the test sample was connected to a fixture consisting of steel plates separated by threaded rods bolted to a hydraulic actuator (Figure 2). The strand passed through the structural floor opening with an anchorage bearing on the underside of the floor.

Each test sample used a SC1 Splice Coupler connecting two 0.5-in, 7-wire strand ends. The test sample was first subjected to 500,000 cycles between 60 and 66 percent of the strand's minimum specified breaking strength. At the conclusion of the 500,000 cycles, the sample was subjected to 50 cycles between 40 and 85 percent of the specified minimum breaking strength.

The first fatigue load test consisted of 500,000 cycles with a cycle frequency of 6 Hz. The load range of cycling was at least between 60 and 66 percent of the strand's minimum specified breaking strength of 41,300 lbf (24,780 lbf to 27,260 lbf). The hydraulic actuator limits were set between 24,700 lbf and 27,400 lbf to ensure the specified load range was achieved. Data for the 500,000-cycle fatigue test were recorded on a per cycle basis. Recorded data included maximum force and minimum force per cycle.

AC303 Testing of SC1 Splice Coupler

At the completion of the 500,000 cycles, 50 cycles with a cycle frequency of 1 Hz were performed with a load range of cycling between 40 and 85 percent of the strand's minimum specified breaking strength of 41,300 lbf (16,520 lbf to 35,105 lbf). The hydraulic actuator limits were set between 16,400 lbf and 35,200 lbf to ensure the specified load range was achieved. Recorded data included applied maximum and minimum force for each cycle.

At the conclusion of the testing, the coupler configuration was considered to pass if neither the strand nor coupler failed during any part of the fatigue tests.

TEST DATA AND RESULTS

The strand used for testing the anchorages meets the minimum ultimate tensile capacity requirements listed in ASTM A416. Table 1 summarizes the strand control test results.

Table 1. Summary of 7-Wire Strand Control Tests

Test Number	Weight (g)	Length (in.)	Area (in²)	Load at 1% Elongation (lbf)	Ultimate Load (lbf)	Elongation at Maximum Load (%)
05-1	224.0	11.667	0.148	37,920	43,080	6.20
05-2	224.0	11.667	0.148	37,880	43,040	6.02
05-3	224.0	11.667	0.148	37,890	42,980	6.54
			Average	37,897	43,033	6.25

The results from the static load tests and fatigue load tests are tabulated in Tables 2 and 3, respectively. Included in each table is the testing summary for each test. The load-elongation plots for the static testing and the load-cycle plots for fatigue testing are included in Appendix D and Appendix E, respectively.

The anchorage assemblies' static test results exceeded 95 percent of the actual strand tensile strength. The anchorage assemblies successfully completed the fatigue test requirements. The SC1 Splice Coupler configuration listed in Table 2 and Table 3 passed the requirements outlined in AC303 Sections 3.2.2 and 3.3.2.

Test results were also compared to the requirements stated in ACI 318-25, Section 25.8.1, ACI 423.7-14, Section 9.4 and Section 9.5, and Post-Tensioning Institute (PTI) PTI M10.2-24, Section 2.5. The SC1 Splice Coupler configuration listed in Table 2 and Table 3 passed the requirements of ACI 318-25, ACI 423.7-14, and PTI M10.2-24.

AC303 Testing of SC1 Splice Coupler

Table 2. Summary of SC1 Splice Coupler Static Load Tests

Test Number	Anchorage Material	Total Elongation (%)	Ultimate Load (lbf)	95% of Control Strand Ultimate Load (lbf)	Pass/Fail
SC1 Splice Coupler 05 - 1	SC1 Splice Coupler	3.44	42,160	40,880	Pass
SC1 Splice Coupler 05 - 2	SC1 Splice Coupler	3.49	42,410	40,880	Pass
SC1 Splice Coupler 05 - 3	Coupler SC1 Splice Coupler		41,920	40,880	Pass

Source: Anchorage static test results

Table 3. Summary of SC1 Splice Coupler Fatigue Load Tests

Test Number	A al- a a- a-	rage Load Test	Charak	Final	Load		
	Anchorage Material	Cycles	Start Length (in.)	Final Length (in.)	Min Load (lbf)	Max Load (lbf)	Pass/Fail
080825	SC1 Splice Coupler	500,000	60	60	24,700	27,400	Pass
080825	SC1 Splice Coupler	50	60	60	16,400	35,200	Pass
081025	SC1 Splice Coupler	500,000	60	60	24,700	27,400	Pass
081025	SC1 Splice Coupler	50	60	60	16,400	35,200	Pass

Source: Anchorage fatigue load test results

AC303 Testing of SC1 Splice Coupler

Figure 1. SC1 Splice Coupler showing one end with strand and spring used to hold wedges in place.

AC303 Testing of SC1 Splice Coupler

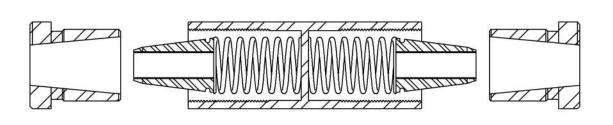
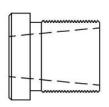
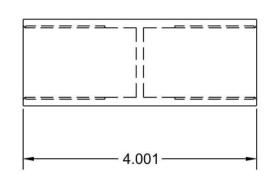
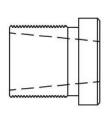
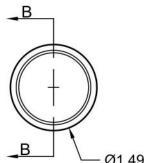


Figure 2. SC1 Splice Coupler fatigue sample with top end anchored to hydraulic actuator and bottom end bearing on structural floor soffit below.


AC303 Testing of SC1 Splice Coupler


APPENDIX A. PRODUCTION DRAWING





SECTION B-B

SC1

SPLICE COUPLER BARE STEEL, ½" CABLE

1			
DRAWN	GLL	DATE: 08/12/25	DWG. NO.
CHECKED	JW	22 32	SK-1
SCALE	NTS		SHEET 1 OF 1

AC303 Testing of SC1 Splice Coupler

APPENDIX B. TEST MACHINE AND EXTENSOMETER CALIBRATION CERTIFICATES

AC303 Testing of SC1 Splice Coupler

Test Machines

MTS Field Service

MTS Systems Corporation

14000 Technology Drive Eden Prairie, MN 55344-2290

330 Pfingsten Road Northbrook, IL 60062U

Certificate of Calibration

Customer Name: Wiss, Janney, Elstner Associates, Inc.

Certificate Number: 2394-15646

System ID: Seismic Frame Machine ID: Seismic Frame

MTS System No: Seismic

Location: Anchor Testing Lab

Co

Site: 508308 Country: SA

Page: 1 of 3

Equipment

Device Type: Force

Model: 661.23A-01

Serial No.: 1194

Device ID: N/A Conditioner Model: 494.26 DC A

Serial No.: 1261214

Readout Device Model: COMPUTER

Serial No.: Serial

Channel: Port

MTS Field Service is accredited by the American Association for Laboratory Accreditation (A2LA Cert. No. 1145.01).

The basis for this accreditation is the international standard for calibration laboratories, ISO/IEC 17025

"General Requirements for the Competence of Testing and Calibration Laboratories".

Defined and documented measurement assurance techniques or uncertainty analyses are used to verify the adequacy of the measurement processes.

Calibrations are performed with standards whose values and measurements are traceable to the International System of Units (SI) through a National Metrology Institute (NMI).

MTS Reference Force Transducers are calibrated in compliance with ASTM E74.

The results of this calibration relate only to the items calibrated.

When parameter(s) are reported to be within specified tolerance(s), the measured value(s) shall fall within the appropriate specification limit and the uncertainty of the measured value(s) shall be stated.

CALIBRATION INFORMATION

As Found: In Tolerance Calibration Date: 07-Jan-2025
As Left: In Tolerance Calibration Due: 07-Jan-2026

Tolerance: +/-1.0% of Applied Force Calibration Procedure: FS-CA 2122

Full Scale Ranges: 55000 lbf

Note:

ASTM E4-21

STANDARDS USED FOR CALIBRATION

MTS Asset NumberManufacturerModel NumberDescription19695Interface Inc.InterfacemV/V Indicator

26923 Rotronic HL-20D Temp and Humidity Meter

20980 Interface 50kip Load Cell

Performed by: Jim Rieder Issued on: 7-Jan-25

ACS Version: 12.2.3

ACSRepRevBR

MTS Systems Corporation 14000 Technology Drive Eden Prairie, MN 55344-2290

Calibration Report

Location: Anchor Testing Lab

ACS Version: 12.2.3

Out of Tolerance in % column

7-Jan-25

Date:

Customer Name: Wiss, Janney, Elstner Associates, Inc. System ID: Seismic Frame MTS System No: Seismic

Report Number: 2394-15646 Site: 508308 Country: SA

Channel: Port

Page: 2 of 3

Equipment

Model: 661.23A-01 Serial No.: 1194 Device Type: Force

Device ID: N/A

Machine ID: Seismic Frame

Conditioner Model: 494 26 DC A

Serial No : 1261214 Readout Device Model: COMPUTER Serial No.: Serial

Procedure

MTS Procedure: FS-CA 2122

Calibration has been performed in accordance with: ASTM E4-21 See * note for decision rule applied.

Method of Verification: Follow-the-Force Method using Elastic Calibration Devices

Calibration Equipment Asset No.

Dead Weight Set: N/A Environmental Meter: 26923 Digital Indicator: 19695 DMM: N/A

DW Compensation: N/A Additional Equipment: N/A Standardizer: N/A Standard Asset No.: 20980 Lower Limit: 1000 lbf Calibration Agency: ASTM E74

Conditions

66 F 67 F Bidirectional: N/A Cable Length: 50 Feet Initial Temperature: Final Temperature:

Initial Humidity: 17 % Final Humidity: 17 % Polarity(+): Tension

Maximum Relative Error: -0.59 %

In Tolerance As Found: Х Tolerance: +/-1.0% of Applied Force As Found System Condition: **Out of Tolerance** As Adjusted: Good

Conditioner Parameters Total Gain: 378.68847 Fine zero: -0.02972 Shunt Cal (+): 31115.9 lbf.

Polarity: Normal Pre-amp gain: 285.98 Excitation: 10.0 Volts Post-amp gain: 1.32418

Calibration Data Range

Compression Resolution: Full Scale: 55000

Report Units Series 2 Errors Applied Series 1 Series 1 Errors Series 2 Repeatability Percent of Indicated Percent Units Percent Indicated Indicated Percent Units Indicated Indicated Percent Units Percent Reading Reading Full Scale Error Frror Frror Frror Reading Frror Frror Frror Error Frron Asc Force Ascending Descending Asc Desc Desc Ascending Descending Asc Asc Desc Desc Asc Desc 0.6 0.00 0.00 0. 0.6 0.1 0.3 -0.1 0.3 0.09 -2. -1097.1 -2.9 -0.26 -1098.1 -0.17 -1.9 -4. -2193.6 -6.4 -0.29 -2193.0 -7.0 -0.320.03 -6. -3285.8 -14.2 -0.43 -3288.6 -11.4 -0.35 0.08 -0.43 -8. -18.7 -0.43 -18.8 -4381.3 -4381.2 0.00 -21.0 -10. -5475.6 -24.4 -0.44 -5479.0 -0.38 0.06 -20. -10953.0 -47.0 -0.43 -10957.0 -43.0 -0.39 0.04 -40. -21897.0 -103.0 -0.47 -21900.0 -100.0 -0.450.01 -70. -38308.0 -192.0 -0.50 -38312.0 -188.0 -0.49 0.01 -100. -54677.0 -323.0 -0.59 -54679.0 -321.0 -0.58 0.00

Range:

Applied	Ser	ies 1		Series 1	Errors		Ser	ies 2		Series 2	2 Errors		Repeatability		
Percent of	Indicated	Indicated	Units	Percent	Units	Percent	Indicated	Indicated	Units	Percent	Units	Percent	Per	Percent	
Full Scale	Reading	Reading	Error	Error	Error	Error	Reading	Reading	Error	Error	Error	Error	Er	ror	
Force	Ascending	Descending	Asc	Asc	Desc	Desc	Ascending	Descending	Asc	Asc	Desc	Desc	Asc	Desc	
0.	-0.9	-0.3	-0.9	0.00	-	-	-0.9	0.8	-0.9	0.00	•	-	-	-	
2.	1094.8	-	-5.2	-0.47	-	-	1097.3	-	-2.7	-0.25	-	-	0.23	-	
4.	2193.1	-	-6.9	-0.31	-	-	2193.7	-	-6.3	-0.29	-	-	0.03	-	
6.	3289.7	-	-10.3	-0.31	-	-	3291.0	-	-9.0	-0.27	-	-	0.04	-	
8.	4386.6	-	-13.4	-0.30	-	-	4389.0	-	-11.0	-0.25	-	-	0.05	-	
10.	5484.6	-	-15.4	-0.28	-	-	5483.7	-	-16.3	-0.30	-	-	0.02	-	
20.	10977.0	-	-23.0	-0.21	-	-	10974.0	-	-26.0	-0.24	-	-	0.03	-	
40.	21945.0	-	-55.0	-0.25	-	-	21945.0	-	-55.0	-0.25	-	-	0.00	-	
70.	38402.0	-	-98.0	-0.25	-	-	38399.0	-	-101.0	-0.26	-	-	0.01	-	
100.	54869.0	-	-131.0	-0.24	-	-	54884.0	-	-116.0	-0.21	-	-	0.03	-	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Errors at Zero are computed in % of Range.

Performed By: Jim Rieder

Uncertainty of the data supplied is equal to or less than 0.25% of reading for a coverage factor of k=2 and an approximate confidence level of 95%.

Field Service Engineer

This report shall not be reproduced except in full, without the written approval of the laboratory.

MTS Reference Force Transducers are temperature compensated over the range of use. American Association of Laboratory Accreditation Certificate Number: 1145.01

* Decision Rule: Where the calibration decision rule is not inherent in the calibration method/standard , the decision rule used is Simple Acceptance as defined in ILAC G8 with the best TUR (Test Uncertainty Ratio) possible

(typically 4:1). Although measurement uncertainty was accounted for during the TUR determination, it is the user's responsibility to assess the risk of acceptance with consideration of the stated measurement uncertainty Where a zero value is reported as an offset or "nulling value" (i.e., a mechanical or electrical zero), its associated measurement uncertainty cannot be calculated. For that reason, the zero is not metrologically traceable and is therefore

Jim Rieder Signature: Next Customer Agreed Upon Calibration Date: 7-Jan-26 ACSRepRevBR

MTS Systems Corporation 14000 Technology Drive Eden Prairie, MN 55344-2290

Calibration Report

Model: 661.23A-01

Conditioner

Page: 3 of 3 Report Number: 2394-15646

Name: Wiss, Janney, Elstner Associates, Inc. Customer

System ID: Seismic Frame MTS System No: Seismic Machine ID: Seismic Frame

Site: 508308 Location: Anchor Testing Lab Country: SA

Serial No.: 1194

Equipment

Device Type: Force

Device ID: N/A Conditioner Model: 494.26 DC A Serial No.: 1261214

Readout Device Model: COMPUTER Serial No.: Serial Channel: Port

Standard

Range:

Full Scale: 55000 Units: Linearization Table lbf

As Found: Χ As Adjusted:

Stariuaru	Conditioner
-55000.0	-55000.0
-44000.0	-44000.0
-35750.0	-35750.0
-30250.0	-30250.0
-24750.0	-24750.0
-19250.0	-19250.0
-13750.0	-13750.0
-8250.0	-8250.0
-2750.0	-2750.0
0.0	0.0
2750.0	2750.0
8250.0	8250.0
13750.0	13750.0
19250.0	19250.0
24750.0	24750.0
30250.0	30250.0
35750.0	35750.0
44000.0	44000.0
55000.0	55000.0
1	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-

Certificate Of Calibration

Equipment Calibration was performed at the address below for WISS, JANNEY, ELSTNER ASSOC.

330 PFINGSTEN ROAD
NORTHBROOK, IL 60062

Certificate # 866.01

Calibration

Date of Calibration

Issue Date:

Monday, March 17, 2025

03/28/2025

Manufacturer: RIEHLE Capacity: 500000 Next Cal: 17-Mar-2026

Model: 500FH Serial #: 47247 Customer #: 691

Language LBS Force Calibration Results Accuracy: 1.0 %

Range	Verified Range Force	Uncertainty %	Maximum Error %
500000	50000 - 500000	0.29	0.30
250000	25000 - 250000	0.29	0.85
100000	10000 - 100000	0.29	0.36
20000	2000 - 20000	0.29	-0.48

Cal-Rite Corporation has calibrated the testing equipment described above in accordance with ISO/IEC 17025:2017, ANSI/NCSL Z540-1-1994 and 10-CFR-21. All elastic verification devices have been calibrated in accordance with ASTM E74 practices and are traceable to the International System of Units (SI) through NIST.

Computed forces have been temperature corrected as necessary.

The uncertainty of the calibration process was estimated approximately at the 95% confidence level (k=2). When a decision rule is stated in the governing specification, the prescribed decision rule was used in the pass/fail determination unless otherwise noted. In all other cases where a statement of conformance is made, the determination of conformance is made solely on the measurements falling in or out of the applied tolerance.

Measurement uncertainty is stated, but not used to determine pass/fail status.

This certificate relates only to the item calibrated.

The equipment listed above has met all applicable clauses of the governing specification unless noted below:

☐ 11.1 Lower Limit below 200X Resolution ☐ 11.5 Does not return to zero in 30 seconds

Specification: ASTM E 4-24 QMS Revision: 3.01

Service Comments: Verified proper operation of machine. Calibrated force in accordance with ASTM standards. All readings found and left within tolerance and repeatable. Adjustments were made to the 20k range to improve the accuracy. The machine is in good condition and functioning properly at this time.

As Found Condition: In Tolerance Calibration Procedure: CR100 Rev 17

Calibration Method: Follow the Force Software Version: N/A

Service Order #: 21043 - 34

NATHAN HATHAWAY

SERVICE ENGINEER

As a mutual protection to the purchaser, the public, and ourselves, all Cal-Rite calibration reports are submitted as the confidential property of the purchaser, and any authorization for publication of statements, conclusions, or extractions from or regarding our reports is reserved pending our prior written approval.

STDM 01-22 Page 1 of 2 Customer PO #: 04162.

Certificate # 866.01 Calibration

WISS, JANNEY, ELSTNER ASSOC.

330 PFINGSTEN ROAD

0.00%

0.00%

Zero

Zero

NORTHBROOK, IL 60062

Calibration Date: 17-Mar-2025

Next Calibration: 17-Mar-2026

Customer #: 691

Temp/Humidity: 68.5 F/27.2%

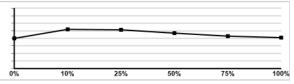
RIEHLE Manufacture: Capacity: 500000 Test Direction: COMPRESSION

WWW.CAL-RITTE.COM

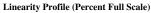
500FH Model: Serial #: 47247 **External Cell: Indicator:** DIGITAL Shunt #: N/A

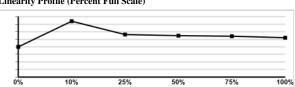
Temp Variance: 0.5

Range:	500000 LB	S	Reso	lution: 100			Accuracy +/- 1.0%			
FS %	Reading	As Found	As Adj.	As Left	Repeat %	Max Error	Error %	Uncert		
0.00	0	0	0	0	0.000	0.000	0.000	0.29		
10.00	50000	49,851	0	49,961	-0.221	148.900	0.299	0.29		
25.00	125000	124,648	0	125,007	-0.288	352.000	0.282	0.29		
50.00	250000	249,568	0	249,906	-0.135	431.900	0.173	0.29		
75.00	375000	374,723	0	374,891	-0.045	277.300	0.074	0.29		
100.00	500000	499,875	0	500,082	-0.041	124.800	0.025	0.29		

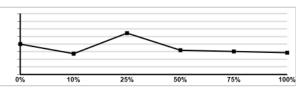

0.00%

0.00%

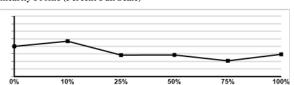

Resolution: 100


0.00%

Range:	250000 LBS	S	Resolution: 100					Accuracy +/- 1.0%	
FS %	Reading	As Found	As Adj.	As Left	Repeat %	Max Error	Error%	Uncert	
0.00	0	0	0	0	0.000	0.000	0.000	0.29	
10.00	25000	24,823	0	24,789	0.134	210.600	0.850	0.29	
25.00	62500	62,256	0	62,246	0.016	253.700	0.408	0.29	
50.00	125000	124,538	0	124,578	-0.032	462.100	0.371	0.29	
75.00	187500	186,840	0	186,958	-0.063	659.900	0.353	0.29	
100.00	250000	249,344	0	249,244	0.040	755.700	0.303	0.29	
Zero	0.00%	0.00%	0.009	6 0.00	%				



Range.	100000 LDS		resolution. 1	00		r	iccuracy +	7- 1.0 /6
FS %	Reading	As Found	As Adj.	As Left	Repeat %	Max Error	Error %	Uncert
0.00	0	0	0	0	0.000	0.000	0.000	0.29
10.00	10000	10,032	0	10,012	0.198	-31.600	-0.315	0.29
25.00	25000	24,910	0	24,918	-0.031	90.100	0.362	0.29
50.00	50000	50,078	0	50,101	-0.046	-101.300	-0.202	0.29
75.00	75000	75,112	0	75,182	-0.094	-182.200	-0.242	0.29
100.00	100000	100,268	0	100,283	-0.016	-283.400	-0.283	0.29


0.00%

Linearity Profile (Percent Full Scale)

Range:	20000 L	BS	Reso	Resolution: 10			Accuracy +/- 1.0%		
FS %	Reading	As Found	As Adj.	As Left	Repeat%	Max Error	Error %	Uncert	
0.00	0	0	0	0	0.000	0.000	0.000	0.29	
10.00	2000	2,019	1,998	1,997	0.070	3.400	0.170	0.29	
25.00	5000	5,039	5,015	5,012	0.054	-14.500	-0.289	0.29	
50.00	10000	10,061	10,029	10,024	0.051	-28.600	-0.285	0.29	
75.00	15000	15,075	15,047	15,072	-0.167	-72.200	-0.479	0.29	
100.00	20000	20,087	20,053	20,050	0.015	-52.800	-0.263	0.29	
Zero	0.00%	6 0.00%	0.00%	0.00%					

Linearity Profile (Percent Full Scale)

Calibrating Apparatus Used

0.00%

Manufacture	Serial Number	Capacity	Class A	Dir	Cal Date	Cal Due	Calibrated By
STRAINSENSE	101209	600000	13396.3	C	9/20/2024	9/20/2026	TOVEY
TOVEY	119937A	60000	1200	C	10/16/2023	10/16/2025	CAL-RITE
MOREHOUSE	17062448	4.4	0	C	2/26/2025	6/26/2025	CAL-RITE

Accuracy ±/- 10%

☐ REPAIRED: **✓** ADJUSTED: 7.3 Interchangeability Established Specification: ASTM E 4-24 ☑ SPECIFICATION COMPLIANT

NATHAN HATHAWAY

CONDITION: Good

Service Order #: 21043 - 34

Calibration Procedure: CR100 Rev 17

SERVICE ENGINEER

As a mutual protection to the purchaser, the public, and ourselves, all Cal-Rite calibration reports are submitted as the confidential property of the purchaser, and any authorization for publication of statements, conclusions, or extractions from or regarding our reports is reserved pending our prior written approval.

AC303 Testing of SC1 Splice Coupler

Extensometer

Certificate Of Calibration

Equipment Calibration was performed at the address below for

WISS, JANNEY, ELSTNER ASSOC.

330 PFINGSTEN ROAD
NORTHBROOK, IL 60062

Certificate # 866.01 Calibration

Issue Date:

Tuesday, March 18, 2025 Instrument Profile

Date of Calibration

03/28/2025

 Manufacturer:
 EPSILON
 Mach/Rec#:
 47247
 G.L. Measurement:
 DIRECT

 Model #:
 3543-0400-400T-ST
 Scaling #:
 N/A
 G.L. Measure(1/2):
 23.9200/23.920

Serial #: E101717-24 Customer #: 5389 G.L. Error (1/2): 0.33% / 0.33%

Instrument Calibration Results

Range Capacity in/in	Verified Range in/in	Uncertainty in	Maximum Error in/in	ASTM Class
0.05	0.01 - 0.05	0.00019	0.000190	B-2
Range Capacity in/in	Verified Range in/in	Uncertainty in	Maximum Error in/in	ISO Class

Calibration Apparatus Used

Inst.	Manufacturer	Serial Number	Model	Calib By	Cert Date	Date Due
101	MITUTOYO	511474	164-162	ICS	1/29/2025	1/29/2026
252	MITUTOYO	2	GAGE BLOCKS	Nationwide Gage	3/13/2024	3/13/2026
362	MITUTOYO	B17288093	CD-8"ASX	ICS	8/27/2024	8/27/2026

Cal-Rite Corporation has calibrated the testing equipment described above in accordance with ISO/IEC 17025:2017, ANSI/NCSL Z540-1-1994 and 10-CFR-21. All calibration measurements are traceable to the International System of Units (SI) through NIST. The accuracy of the calibrating apparatus meets or exceeds ISO 9513 Annex B.

The uncertainty of the calibration process was estimated approximately at the 95% confidence level (k=2). When a decision rule is stated in the governing specification, the prescribed decision rule was used in the pass/fail determination unless otherwise noted. In all other cases where a statement of conformance is made, the determination of conformance is made solely on the measurements falling in or out of the applied tolerance. Measurement uncertainty is stated, but not used to determine pass/fail status.

This certificate relates only to the item calibrated.

Specification: ASTM E 83-23 / EN ISO 9513-13 QMS Revision: 3.01

Service Comments: Verified proper operation of extensometer. Calibrated instrument in accordance with ASTM and ISO standards. All readings found and left within tolerance and repeatable. No adjustments made. The extensometer is in fair condition and functioning properly at this time. Gain setting is 1177.

As Found Condition: In Tolerance

Service Order #: 21043 - 59

SERVICE ENGINEER

As a mutual protection to the purchaser, the public, and ourselves, all Cal-Rite calibration reports are submitted as the confidential property of the purchaser, and any authorization for publication of statements, conclusions, or extractions from or regarding our reports is reserved pending our prior written approval.

EXT-ISO 01-22 Page 1 of 3 Customer PO # 04162

NATHAN HATHAWAY

WISS, JANNEY, ELSTNER ASSOC.

330 PFINGSTEN ROAD NORTHBROOK, IL 60062 Calibration Date: 3/18/2025

Next Calibration: 3/18/2026

Temp/Humidity: 70.3F/34%

ISO 9513 REPORT

Unit Under 1	est Full Travel	Unit Ur	nder	Nominal	#1 Gage	Length	#2 Gage	Length	Measurement
Strain	Displacemen t	Test Reso	olution	Gage Length	Err	or	Er	ror	Uncertainty
(in/in)	(in)	(in/in)	(Class)	(in)	%	(Class)	%	(Class)	(in)
0.05	1.2	0.00004	1	24.0000	0.333	0.5	0.333	0.5	0.0018

	AS FOUND							
Nominal Strain	Nominal Displacement	As Found Strain	As Found Displacement	Bias Error - Absolute	Bias Error - Relative	ISO 9513		
(in/in)	(in)	(in/in)	(in)	(in/in)	(% of Reading)	Class		
0.0000000	0.0000000	0.000000	0.000000	0.00000	N/A	0.2		
0.0100000	0.2400000	0.010010	0.240240	-0.00001	-0.10	0.5		
0.0200000	0.4800000	0.019960	0.479040	0.00004	0.20	0.5		
0.0300000	0.7200000	0.029950	0.718800	0.00005	0.17	0.5		
0.0400000	0.9600000	0.039870	0.956880	0.00013	0.32	0.5		
0.0500000	1.2000000	0.049880	1.197120	0.00012	0.24	0.5		

	AS LEFT						
Nominal Strain	Nominal Displacement	As Left Strain	As Left Displacement	Bias Error - Absolute	Bias Error - Relative	Repeat	ISO 9513
(in/in)	(in)	(in/in)	(in)	(in/in)	(% of Reading)	%	Class
0.0000000	0.0000000	0.000000	0.000000	0.00000	N/A	0.00	0.2
0.0100000	0.2400000	0.009960	0.239040	0.00004	0.40	0.50	0.5
0.0200000	0.4800000	0.019920	0.478080	0.00008	0.40	0.20	0.5
0.0300000	0.7200000	0.029900	0.717600	0.00010	0.33	0.17	0.5
0.0400000	0.9600000	0.039840	0.956160	0.00016	0.40	0.08	0.5
0.0500000	1.2000000	0.049810	1.195440	0.00019	0.38	0.14	0.5

Calibration Procedure: CR101 Rev 17
NATHAN HATHAWAY

SERVICE ENGINEER

Service Order #: 21043 - 59

As a mutual protection to the purchaser, the public, and ourselves, all Cal-Rite calibration reports are submitted as the confidential property of the purchaser, and any authorization for publication of statements, conclusions, or extractions from or regarding our reports is reserved pending our prior written approval.

EXT 01-22 Page 2 of 3

WISS, JANNEY, ELSTNER ASSOC.

330 PFINGSTEN ROAD NORTHBROOK, IL 60062 **Calibration Date:** 3/18/2025

Next Calibration: 3/18/2026

Temp/Humidity: 70.3F/34%

ASTM E83 REPORT

Unit Under	Test Full Travel	Unit l	Jnder	Nominal	#1 Gage	Length	#2 Gage	Length	Measurement
Strain	Displacement	Test Re	solution	Gage Length	Measur	ement	Measu	rement	Uncertainty
(in/in)	(in)	(in/in)	(Class)	(in)	(in)	(Class)	(in)	(Class)	(in)
0.05	1.2	0.00004	B-1	24.0000	23.9200	B-2	23.9200	B-2	0.0018

	AS FOUND							
Nominal Strain	Nominal Displacement	As Found Strain	As Found Displacement	Fixed Error	Relative Error	ASTM E-83		
(in/in)	(in)	(in/in)	(in)	(in/in)	(% of Reading)	Class		
0.0000000	0.0000000	0.000000	0.000000	0.00000	N/A	B-2		
0.0100000	0.2400000	0.010010	0.240240	-0.00001	-0.10	B-2		
0.0200000	0.4800000	0.019960	0.479040	0.00004	0.20	B-2		
0.0300000	0.7200000	0.029950	0.718800	0.00005	0.17	B-2		
0.0400000	0.9600000	0.039870	0.956880	0.00013	0.32	B-2		
0.0500000	1.2000000	0.049880	1.197120	0.00012	0.24	B-2		

	AS LEFT						
Nominal Strain	Nominal Displacement	As Left Strain	As Left Displacement	Fixed Error	Relative Error	Repeat	ASTM E-83
(in/in)	(in)	(in/in)	(in)	(in/in)	(% of Reading)	%	Class
0.0000000	0.0000000	0.000000	0.000000	0.00000	N/A	0.00	B-2
0.0100000	0.2400000	0.009960	0.239040	0.00004	0.40	0.50	B-2
0.0200000	0.4800000	0.019920	0.478080	0.00008	0.40	0.20	B-2
0.0300000	0.7200000	0.029900	0.717600	0.00010	0.33	0.17	B-2
0.0400000	0.9600000	0.039840	0.956160	0.00016	0.40	0.08	B-2
0.0500000	1.2000000	0.049810	1.195440	0.00019	0.38	0.14	B-2

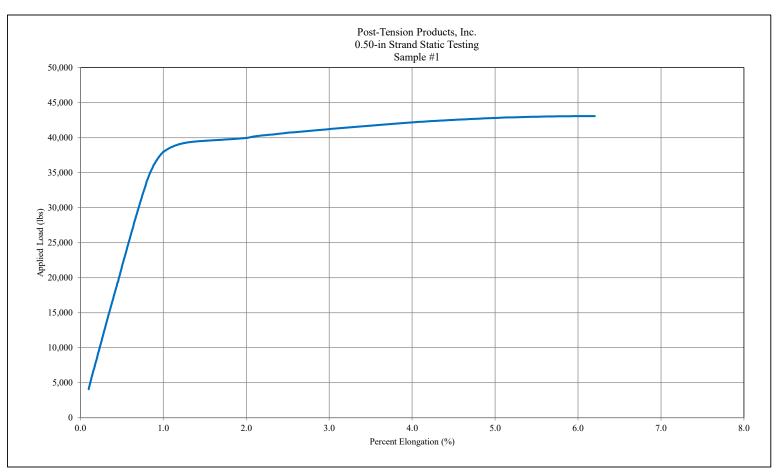
Calibration Procedure: CR101 Rev 17
NATHAN HATHAWAY

SERVICE ENGINEER

Service Order #: 21043 - 59

As a mutual protection to the purchaser, the public, and ourselves, all Cal-Rite calibration reports are submitted as the confidential property of the purchaser, and any authorization for publication of statements, conclusions, or extractions from or regarding our reports is reserved pending our prior written approval.

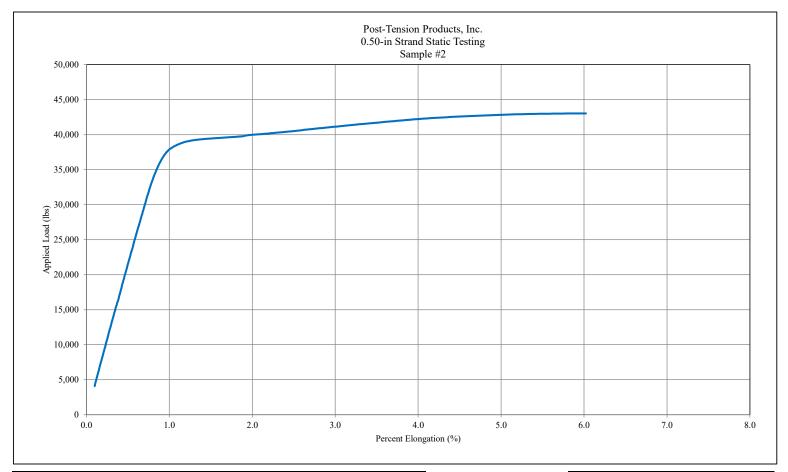
EXT 01-22 Page 3 of 3


AC303 Testing of SC1 Splice Coupler

APPENDIX C. STRAND CONTROL TEST

Verified Dimensions				
Strand Diameter	0.500	in		
Weight	224	grams		
Length	11.667	in		
Area	0.148	in ²		

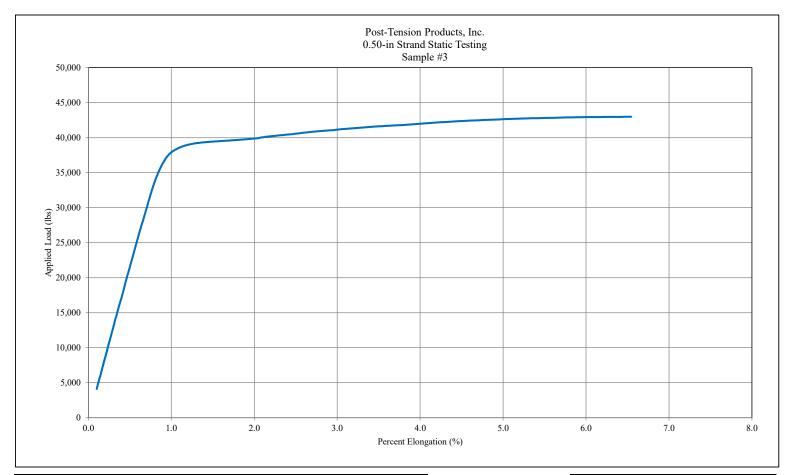
Measured Values				
Load at 1% Elongation	37,920	lbs		
Ultimate Load	43,080	lbs		
Elongation @ Ult Load	6.20	percent		
Modulus of Elasticity	28,777	ksi		


WJE Project Number	2025.3912
Client	Post-Tension Products, Inc.
Sample Tested	0.50-in, 270 ksi, 7-wire strand
Notes	0.50-in. Strand No. 1

Test Location	Northbrook, IL
Test Operator	B Easton
Test Date	8/11/2025
Test Methods	ASTM A1061, A416

Verified Dimensions		
Strand Diameter	0.500	in
Weight	224	grams
Length	11.667	in
Area	0.148	in ²

Measured Values		
Load at 1% Elongation	37,880	lbs
Ultimate Load	43,040	lbs
Elongation @ Ult Load	6.02	percent
Modulus of Elasticity	28,559	ksi


WJE Project Number	2025.3912
Client	Post-Tension Products, Inc.
Sample Tested	0.50-in, 270 ksi, 7-wire strand
Notes	0.50-in. Strand No. 2

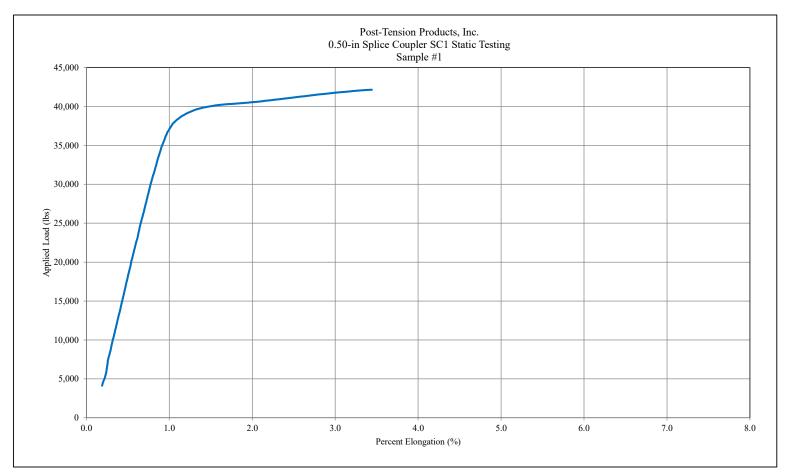
Test Location	Northbrook, IL
Test Operator	B Easton
Test Date	8/11/2025
Test Methods	ASTM A1061, A416

Verified Dimensions		
Strand Diameter	0.500	in
Weight	224	grams
Length	11.667	in
Area	0.148	in ²

Measured Values		
Load at 1% Elongation	37,890	lbs
Ultimate Load	42,980	lbs
Elongation @ Ult Load	6.54	percent
Modulus of Elasticity	28,673	ksi

WJE Project Number	2025.3912
Client	Post-Tension Products, Inc.
Sample Tested	0.50-in, 270 ksi, 7-wire strand
Notes	0.50-in. Strand No. 3

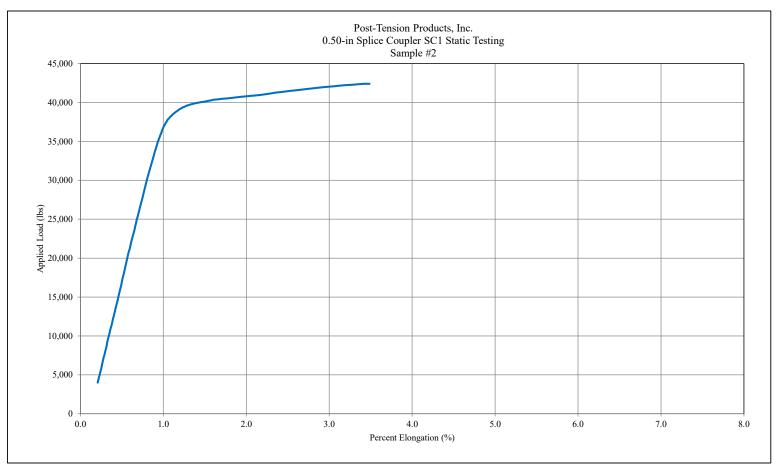
Test Location	Northbrook, IL
Test Operator	B Easton
Test Date	8/11/2025
Test Methods	ASTM A1061, A416


AC303 Testing of SC1 Splice Coupler

APPENDIX D. SC1 SPLICE COUPLER STATIC TESTS

Verified Dimensions		
Strand Diameter	0.500	in
Weight	224	grams
Length	11.667	in
Area	0.148	in ²

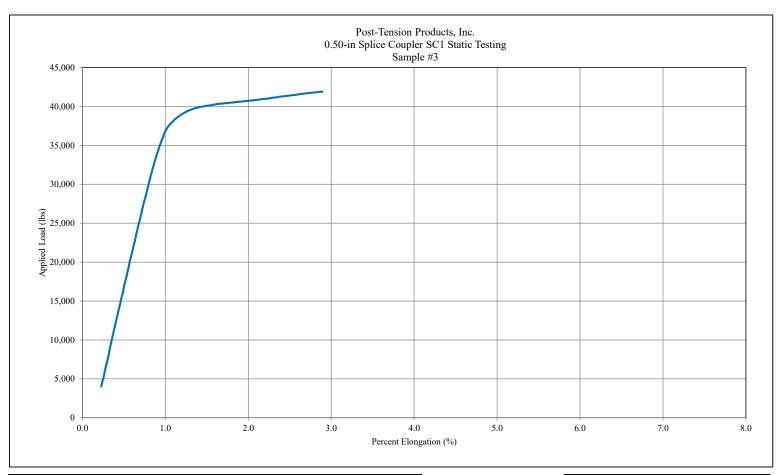
Measured Values		
Load at 1% Elongation	36,960	lbs
Ultimate Load	42,160	lbs
Elongation @ Ult Load 3.44		percent
Modulus of Elasticity	29,591	ksi


WJE Project Number	2025.3912
Client	Post-Tension Products, Inc.
Sample Tested	0.50-in, 270 ksi, 7-wire strand with anchor
Notes	0.50-in. Strand with Splice Coupler SC1 No. 1

Test Location	Northbrook, IL
Test Operator	B Easton
Test Date	6/20/2025
Test Methods	ASTM A1061, A416

Verified Dimensions		
Strand Diameter	0.500	in
Weight	224	grams
Length	11.667	in
Area	0.148	in ²

Measured Values		
Load at 1% Elongation	36,640	lbs
Ultimate Load	42,410	lbs
Elongation @ Ult Load	3.49	percent
Modulus of Elasticity	29,478	ksi

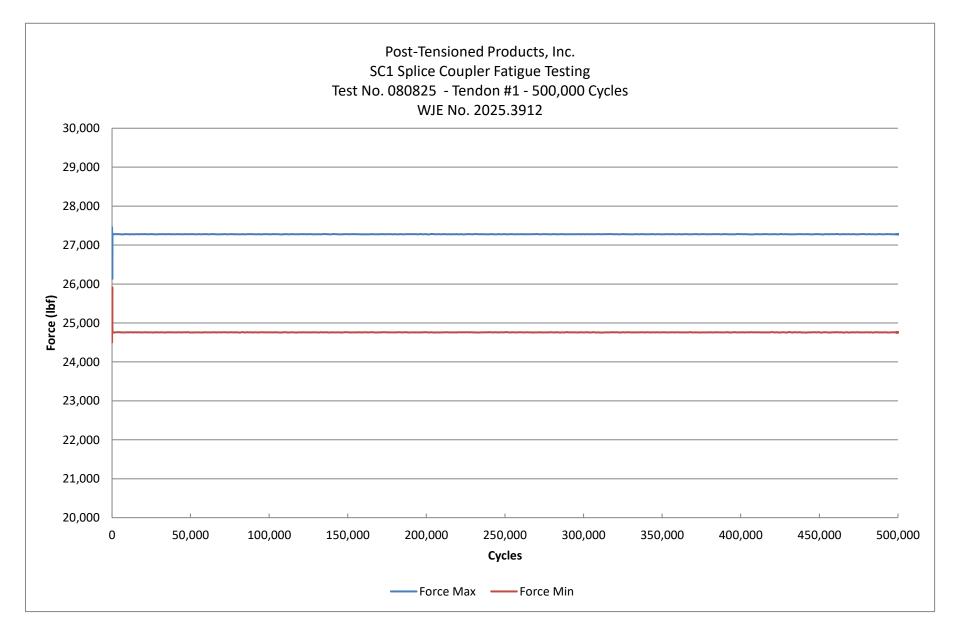

WJE Project Number	2025.3912	
Client	Post-Tension Products, Inc.	
Sample Tested	0.50-in, 270 ksi, 7-wire strand with anchor	
Notes	0.50-in. Strand with Splice Coupler SC1 No. 2	

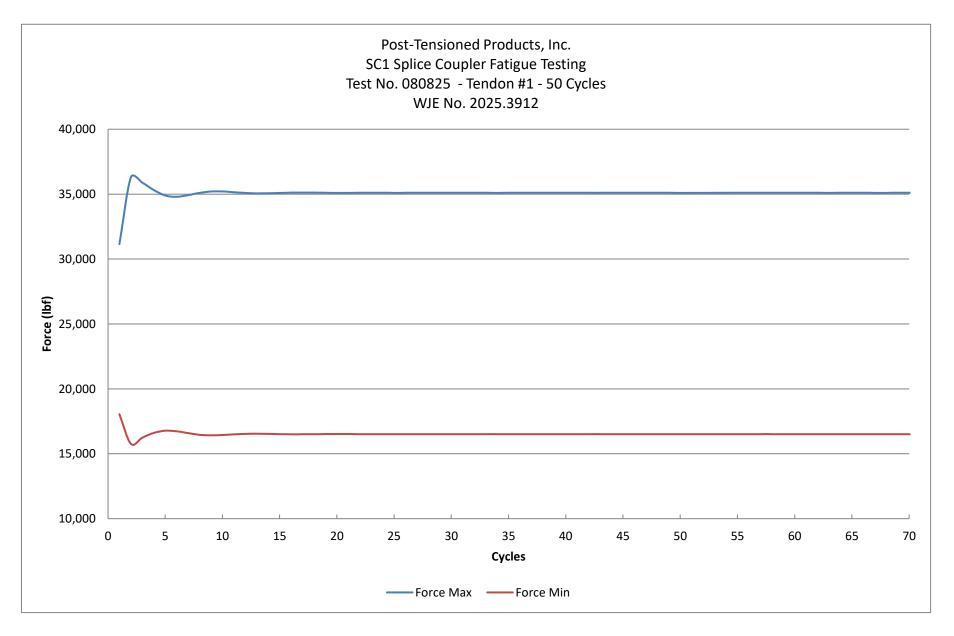
Test Location	Northbrook, IL
Test Operator	B Easton
Test Date	6/20/2025
Test Methods	ASTM A1061, A416

Verified Dimensions		
Strand Diameter	0.500	in
Weight	224	grams
Length	11.667	in
Area	0.148	in ²

Measured Values		
Load at 1% Elongation	36,780	lbs
Ultimate Load	41,920	lbs
Elongation @ Ult Load	2.84	percent
Modulus of Elasticity	30,446	ksi

WJE Project Number	2025.3912	
Client	Post-Tension Products, Inc.	
Sample Tested	0.50-in, 270 ksi, 7-wire strand with anchor	
Notes	0.50-in. Strand with Splice Coupler SC1 No. 3	


Test Location	Northbrook, IL
Test Operator	B Easton
Test Date	6/20/2025
Test Methods	ASTM A1061, A416


AC303 Testing of SC1 Splice Coupler

APPENDIX E. SC1 SPLICE COUPLER FATIGUE TESTS

